Oltipraz
Oltipraz is a drug that was originally used to treat intestinal worms. It was later found to prevent a broad variety of cancers ( 1 ). Thi...
https://about-diabetic.blogspot.com/2011/03/oltipraz.html
Oltipraz is a drug that was originally used to treat intestinal worms. It was later found to prevent a broad variety of cancers (1). This was attributed to its ability to upregulate cellular detoxification and repair mechanisms.
Researchers eventually discovered that oltipraz acts by activating Nrf2, the same transcription factor activated by ionizing radiation and polyphenols (2, 3, 4). Nrf2 activation mounts a broad cellular protective response that appears to reduce the risk of multiple health problems.
A recent paper in Diabetologia illustrates this (5). Investigators put mice on a long-term refined high-fat diet, with or without oltipraz. These carefully crafted diets are very unhealthy indeed, and when fed to rodents they rapidly induce fat gain and something that looks similar to human metabolic syndrome (insulin resistance, abdominal adiposity, blood lipid disturbances). Adding oltipraz to the diet prevented the fat gain, insulin resistance and inflammatory changes that occurred in the refined high-fat diet group.
The difference in fasting insulin was remarkable. The mice taking oltipraz had 1/7 the fasting insulin of the refined high-fat diet comparison group, and 1/3 the fasting insulin of the low-fat comparison group! Yet their glucose tolerance was normal, indicating that they were not low on insulin due to pancreatic damage. The low-fat diet they used in this study was also refined, which is why the two control groups (high-fat and low-fat) didn't diverge more in body fatness and other parameters. If they had used a group fed unrefined rodent chow as the comparator, the differences between groups would have been larger.
This shows that in addition to preventing cancer, Nrf2 activation can attenuate the metabolic damage caused by an unhealthy diet in rodents. Oltipraz illustrates the power of the cellular hormesis response. We can exploit this pathway naturally using polyphenols and other chemicals found in whole plant foods.
Researchers eventually discovered that oltipraz acts by activating Nrf2, the same transcription factor activated by ionizing radiation and polyphenols (2, 3, 4). Nrf2 activation mounts a broad cellular protective response that appears to reduce the risk of multiple health problems.
A recent paper in Diabetologia illustrates this (5). Investigators put mice on a long-term refined high-fat diet, with or without oltipraz. These carefully crafted diets are very unhealthy indeed, and when fed to rodents they rapidly induce fat gain and something that looks similar to human metabolic syndrome (insulin resistance, abdominal adiposity, blood lipid disturbances). Adding oltipraz to the diet prevented the fat gain, insulin resistance and inflammatory changes that occurred in the refined high-fat diet group.
The difference in fasting insulin was remarkable. The mice taking oltipraz had 1/7 the fasting insulin of the refined high-fat diet comparison group, and 1/3 the fasting insulin of the low-fat comparison group! Yet their glucose tolerance was normal, indicating that they were not low on insulin due to pancreatic damage. The low-fat diet they used in this study was also refined, which is why the two control groups (high-fat and low-fat) didn't diverge more in body fatness and other parameters. If they had used a group fed unrefined rodent chow as the comparator, the differences between groups would have been larger.
This shows that in addition to preventing cancer, Nrf2 activation can attenuate the metabolic damage caused by an unhealthy diet in rodents. Oltipraz illustrates the power of the cellular hormesis response. We can exploit this pathway naturally using polyphenols and other chemicals found in whole plant foods.